
J o u r n a l of Global Op t imiza t i on , 4, 187-208 (1994)
�9 1994 Kluwer A c a d e m i c Pub l i she r s . P r i n t e d in t he Ne the r l ands .

M o l e c u l a r C o n f o r m a t i o n on the C M - 5 by Paral le l
T w o - L e v e l S i m u l a t e d A n n e a l i n g

GUOLIANG XUE*
Departmen~ of Computer Science and Electrical Engineering, University of Vermont, Burlington,
VT 05405

A b s t r a c t . In th i s pa pe r , we p ropose a new k i nd of s i m u l a t e d a n n e a l i n g a l g o r i t h m cal led two-level
simulated annealing for so lv ing ce r t a in class of h a r d combina to r i a l o p t i m i z a t i o n p rob lems . Th i s
two-level s i m u l a t e d a rmea l ing a lgor i t lma is less likely to get s t uck a t a non-g loba l m i n i m i z e r t h a n
conven t iona l s i m u l a t e d a lmea f ing a lgor i t lnns . We also p ropose a paral le l vers ion of our two-level
s i m u l a t e d a imea l l ng a lgor i t lml a n d d iscuss i ts efficiency. Tlfis new t echn ique is t h e n app l ied to
the Molecula r Co l f fo rma t ion p r o b l e m in 3 d i m e n s i o n a l Euc l i dean space. Ex t ens ive c o m p u t a t i o n a l
r e su l t s on T t f ink ing Mach ines CM-5 are p re sen ted . W i t h t he full L e n n a r d - J o n e s p o t e n t i a l f u n c t i o n ,
we were able to get s a t i s f ac to ry re su l t s for p r o b l e m s for c lus te r sizes as la rge as 100,000. A p e a k
r a t e of over 0.8 g iga flop pe r s econd in 64-hi t ope ra t i ons was s u s t a i n e d on a p a r t i t i o n wi th 512
p roces s ing e l emen t s . To t he be s t of our knowledge , g r o u n d s t a t e s of L e n n a r d - J o n e s c lus te rs of
size as la rge as t he se have neve r b e e n r e p o r t e d before .

K e y w o r d s : Molecu la r con fo rma t ion , g lobal op t imiza t ion , s i m u l a t e d annea l ing , para l le l algo-
r i t h m s

1. I n t r o d u c t i o n

Simulated annealing is a general purpose combinatorial optimization technique that
has been proposed by Kirkpatrick et al. [19]. This method is an extension of a
Monte Carlo method developed by Metropolis et al. [23], to determine the equilib-
rium states of a collection of atoms at any given temperature T. Since the method
was first proposed in [19, 20], much research has been conducted on its use and
properties. Some relevant references are: [3, 7, 9, 10, 16, 17, 24, 26].

In this paper, we present a new kind of simulated annealing algorithm called two-
level simulated annealing which is less likely to get stuck at a non-global minimizer.
Instead of moving from one solution to another, the two-level simulated anneal ing
algorithm moves from one catchment basin of a local minimizer to the catchment
basin of another (or the same) local minimizer. Advantages of this new algorithm
over conventional simulated annealing algorithms are discussed. A new method of
parallelizing a sequential simulated annealing (conventional or two-level) algorithm
is presented next. The parallel algorithm is usually different from the sequential
algorithm, but follows the same philosophy of simulated annealing algorithms and
is very efficient. These techniques are then applied to the Molecular Conforma-
tion problem and implemented in F77 and message passing mode on the Thinking

*ALSO A R E S E A R C H E R AT T H E A R M Y H I G H P E R F O R M A N C E C O M P U T I N G RE-
S E A R C H C E N T E R , U N I V E R S I T Y OF M I N N E S O T A , M I N N E A P O L I S , MN 55415

188 xuE

Machines CM-5. We first reduce the time complexity of an algorithm proposed by
Northby [25] for Molecular Conformation. Then the improved Northby algorithm
is combined with the two-level simulated annealing algorithm to get satisfactory re-
sults for Molecular Conformation problems of sizes much larger than ever reported
before. These computational results demonstrate that the parallel two-level simu-
lated annealing algorithm is a very powerful tool for solving certain class of hard
combinatorial optimization problems.

The rest of the paper is organized as follows. In section 2, we present the two-
level simulated annealing algorithm and discuss its advantage over conventional
simulated annealing algorithms. In section 3, we present a paradigm for parallelizing
sequential simulated annealing algorithms. In section 4, we present the Molecular
Conformation problem, the combinatorial optimization problem associated with
it, Northby's algorithm and its improvement, and a parallel two-level simulated
annealing algorithm for solving the combinatorial optimization problem. In section
5, computational results on the CM-5 are presented. In section 6, we make some
conclusion remarks.

2. Two-Leve l Simulated Annealing

Given a real-valued function f (x) defined on a feasible domain 7), the general global
optimization (minimization) problem is to find a point z* E 7) such that f (z) is
globally minimized at x*, i.e., f(x*) <_ f (z) for all x E 7). The general global
optimization problem is stated as follows:

(P) global min f(x),
subject to x E 7).

A point x* E 7) is called a global minimizer of (P) if f(x*) < f (x) for all z E 7).
A point z* E 7) is called a local minimizer of (P) if f(x*) _< f (z) for all x in a
neighborhood of x*. Here we are interested in finding a global minimizer of (P).
There have been many approaches to solving (P), e.g., Multistart with Bayesian
Stopping Rules [2], Genetic Algorithms [17], and Simulated Annealing [19, 20]. In
this paper, we are interested in simulated annealing like algorithms.

The basic simulated annealing algorithm as proposed by Kirkpatrick et al. [19, 20]
for solving (P) is stated in Figure l, where a is a given constant in the interval
(0, 1), number_of_iterations is a given positive integer, and perturbation() is a
procedure which generates a new trial point be making a small perturbation from
the current solution.

Algorithm_l: Simulated Annealing
Set T to a positive number (initial temperature). Set Xold to an initial feasible
solution and compute fold := f(Xold). Set xb~st := Xold and fb~,t : = fold.
repeat

MOLECULAR CONFORMATION ON THE CM-5 189

for i := 1 to number_of_iterations
Xnew := perturbation(xold);
A~w := f (x ~) ;
generate a random number rand E (0, 1);
if ((f~e~o < fold) or (rand < exp((fold -- f~e~)/T))) then

Xold := Xnew; fold := fnew;
if (f ,~o < fb~t) then

xb~,~ := x~ew; fbe,~ := f ~ ;
endif

endif
endfor
T : : aT;

until (stopping criterion is met)
Output xb~,t and fbe,t as the best known solution and objective function value.

Figure 1. Basic simulated annealing algorithm

A simulated annealing algorithm differs from a conventional iterative improve-
ment algorithm in that it not only accepts a solution with better objective function
value but also accepts a solution with a worse objective function value condition-
ally. When the temperature T is high, the probability of accepting a solution with
a worse objective function value is relatively large, making it relatively easy for the
simulated annealing algorithm to go from the catchment basin corresponding to one
local minimizer to the catchment basin corresponding.to another local minimizer.
It is expected that the algorithm will arrive at the catchment basin of the global
minimizer before the temperature T gets very low. When the temperature T gets
very low, the algorithm will essentially accept a solution only if the new solution has
a better objective function value. Therefore, if the algorithm has already arrived
in the catchment basin of a (global or local) minimizer, it will eventually converge
to that minimizer.

This method has been proved quite useful in solving hard problems in combina-
torial optimization. However, we observe that the simulated annealing algorithm
as stated above suffers from certain drawbacks as described in the following sce-
nario: After a large number of iterations (the temperature has already been very
low), the algorithm arrives at a strictly local minimizer. Unfortunately, this local
minimizer is not a global minimizer. A small perturbation of this local minimizer
produces a new solution still in the catchment of this local minimizer. Since the
local minimizer is a strict one and that the temperature is low, this move will be
rejected. The algorithm tries many times to move in vain, and finally stops at this
non-global solution!

In certain optimization problems, it might be relatively cheap to perform a local
minimization from any given feasible point. These are the problems which we are
interested in. We will propose a two-level simulated annealing algorithm for solving
this kind of optimization problems. It will be seen that the new algorithm is less

190 xuE

likely to get stuck in the above scenario than conventional simulated annealing
algorithms.

Suppose that we are given problem (P) and a cheap local minimization algorithm.
For any given feasible point x E /) , define x to be the local minimizer which the given
local minimization algorithm will lead to from x. Suppose that a small per turbat ion
from x produces y and that we want to determine whether to accept the move or
reject it. The conventional simulated annealing algorithm will compare f (x) and
f (y) to make this decision. We think that it is is more meaningful to compare f(_x)
and f (y) in order to determine whether to accept or reject the move, because we
are interested in finding local minimizers and therefore a point lying on a hill is
not of our interest. This idea leads to the following two-level simulated annealing
algorithm.

A l g o r i t h m _ 2 : T w o - L e v e l S i m u l a t e d A n n e a l i n g
Set T to a positive number (initial temperature) . Set Xold to an initial feasible
solution and compute Xold. Set fold := f(Xold); Xbes, := Xo~d; and fb~,* := fold.
repeat

for i := 1 to number_of_iterations;
xnew := perturbation(xoZd);

: =

generate a random number rand E (0, 1);
if ((f~ew < foZd) or (rand < exp((fold -- fnew)/T))) then

Xold := x,~ew; fozd := fnew;
if (f ~ < fbe~t) then

xb~t := z , ~ ; fb~t := f , ~ ;
endif

endif
endfor
T := aT;

until (stopping criterion is met)
Output Xb~, and fb~t as the best known solution and objective function value.

Figure 2. Two-level simulated annealing algorithm

Our two-level simulated annealing algorithm differs from a conventional simulated
annealing algorithm in that it operates on two sequences of iterative points {xk}
and {xk}. We call {xk} the upper level and {zk} the lower level for the simple
reason that the objective function value of xk is lower than or equal to that of xk.
The per turbat ion (move) is made on the upper level while the decision of accepting
or rejecting the move is based on the comparison of the objective function value on
the lower level. Therefore the algorithm is named two-level simulated annealing.

Why is a two-level simulated annealing algorithm necessary? Suppose that a
small per turbat ion of x produces y. f (y) may be greater than, equal to, or less than
f (x) . This information is useful, but not enough. Even more useful information
is the answer to the following question: Starting f rom y, will a local minimization

MOLECULAR CONFORMATION ON THE CM-5 191

algorithm arrive at a better (lower) local minimizer than x, a same local minimizer
as __x or a different local minimizer with same objective function value as _x, or a
worse local minimizer than x? The two-level simulated annealing algorithm looks
ahead for the latter information before making any decision. In the first two cases,
the two-level simulated annealing algorithm will accept the move. In the third case,
it will accept the move conditionally, depending on the random number rand, the
temperature T, and the difference in f(__x) and f (y) . When the temperature T gets
very low, the two-level simulated annealing will still accept moves which lead to
worse function values, but these moves essentially all lead to better (or same) local
minimizers. In other words, the two-level simulated annealing algorithm can easily
climb up the hill of a catchment basin of a minimizer at any temperature, but is
very careful in moving into the catchment basin of a worse local minimizer when
the temperature T is low.

3. Parallel S imulated Annea l ing

How to implement a (two-level) simulated annealing algorithm efficiently on a given
parallel machine?

The easiest way to implement a simulated annealing algorithm on a parallel ma-
chine is to parallelize the function evaluation phase of a sequential algorithm. In
this case, the parallel algorithm will be the same as the sequential algorithm, except
that the function evaluation phase is speeded up. This kind of implementation is not
efficient unless the function evaluation is the most significant part of the algorithm
and that the function evaluation can be parallelized efficiently.

A second kind of parallel simulated annealing algorithms has been proposed in
[7]. In [7], the authors present a method for parallelizing the simulated annealing
algorithm by mapping the algorithm onto a dynamically structured tree of proces-
sors. They have studied the SA Decision Tree and designed three parallel simulated
annealing algorithms, namely the Static PSA, the Dynamic Balanced PSA, and the
Dynamic Unbalanced PSA. However, the speedup one can hope in the worst case for
the Static PSA on a P processor machine is log 2 P. For the other two PSA's, vari-
ous assumptions are required to guarantee a reasonable speedup. There are many
versions of parallel simulated annealing algorithms. We will not try to mention
all of them here. In what follows, we will present a parallel (two-level) simulated
annealing similar to the one proposed in [10].

We will present our parallel (two-level) simulated annealing algorithm on a EREW
MIMD multiprocessors (or tightly coupled machines). This algorithm will be im-
plemented in a master-slave mode on the Thinking Machines CM-5, a SPMD su-
percomputer (which can be think of as a loosely coupled machines), to solve the
Molecular Conformation problem. For terminologies of parallel computers, readers
are referred to [1].

The parallel algorithm that we are going to describe is a nondeterministic al-
gorithm in the sense that the parallel algorithm is doing different work than the
sequential algorithm and that different runs of the program on the same parallel

192 xuE

computer will perform slightly different work (especially in a timesharing mode
like the CM-5). By no means, we claim that determinacy is not important. We
do think, however, that our parallel algorithm is efficient and that it follows the
philosophy of (two-level) simulated annealing.

In the following description of our parallel algorithm, T, Xold, Zb~,t, fold, fbest,
i, and done are global variables. All other variables are local variables, although
each processor also has a local variable with the same name for each of the global
variables.

Algorithm_3: Parallel Two-Level Simulated Anneal ing
{Initialize global variables}
Set T to a positive number (initial temperature). Set Xold to a initial feasible
solution and compute Xold. Set fold := f(Xold), Xbest : : Xold, fbest : : fold, i := 1,
done := F A L S E .
rep eat_in_p arallel

lock(done, i, T, fold, ;gold);
read(done, i, T, fold, Xold);
unlock(done, i, T, fold~ Xold);
if (done = T R U E) exit repeat_in_parallel loop
if (meal(i, number_of_iterations) = 0) then

lock(T); T := unlock(T);
endif
lock(i); i := i + 1; unlock(i);
Xnew := perturbation(xold); fnew := f(Xnew);
generate a random number rand E (0, 1);
if ((f ~ o < fold) or (rand < exp((fold -- f ~) / T))) then

loek(Xold); Xold := X,~,~o; unlock@old);
lock(fold); fold := f~ew; unlock(fold);
lock(fb~,~); read(lb,,,); unlock(fb,,t);
if (f ~ o < fbest) then

lock(Xbest); Xbest := Xnew; unlock(Xbest);
lock(h ,); := unlock(h . ,) ;

endif
endif
if (stopping criterion is met) then

lock(done); done : = T R U E ; unlock(done);
endif

endrepeat
Output Xbes, and fbes* as the best known solution and objective function value.

Figure 3. Parallel two-level simulated annealing

M O L E C U L A R C O N F O R M A T I O N O N T H E C M - 5 193

It should be clear from the description of the algorithm that two runs of the
same algorithm on same input problem and same parallel machine may or may
not produce the same iterative sequence, depending on whether or not all of the
processors work at the same speed in the two runs. Therefore, in a timesharing
mode, the iterative sequence obtained from two different runs may be different.
However, the parallel algorithm still follows the move/evaluate/decide idea followed
by the sequential (two-level) simulated annealing algorithm. It tries to move from
one iteration point to another, accepting a better solution, and accepting a worse
solution with some probability. The parallel algorithm in [7] works the same as the
sequential algorithm, but at a cost of a lot of wasted computation time. In our
parallel algorithm, all of the computation provides useful information. There is no
waste of computer time except the communication time if it is implemented on a
loosely coupled machine.

4. M o l e c u l a r C o n f o r m a t i o n on t h e C M - 5

The minimization of potential energy functions of clusters of atoms is known as the
molecular conformation problem. The global minima of potential energy functions
are of great interests to researchers in chemistry, biology, physics, and optimization.
One of the fundamental problems in molecular conformation is the minimization of
the pure Lennard-Jones potential function [12]. Even this problem has been proven
to be very hard. Hoare has claimed that the number of local minimizers of a cluster
of n atoms grows as fast as the function O(en2). Nontheless, many papers have
been published on computational methods [4, 5, 11, 13, 14, 15, 18, 25, 27, 28, 29,
32, 33, 34] and putative global minima for cluster sizes as large as n = 150 have
been reported [14, 25, 29].

The most successful algorithm for minimizing Lennard-Jones clusters has been
Northby's algorithm which first finds a set of lattice local minima and then relaxes
those lattice minima by continuous minimization. With this algorithm, Northby is
able to publish putative global minima for cluster sizes ranging from 13 to 150 [25].
In Northby's algorithm, the lattice search part is a discrete optimization problem
(actually a combinatorial one). Therefore in [22], we call this algorithm a Discrete-
Continuous algorithm. So far, the most computing intensive part in Northby's
algorithm is in the discrete optimization. And the most computing intensive part
in Northby's lattice search algorithm is in the search for lattice local minima w h e re
it pivots from one configuration to another with a better function value. We call
each of these pivots a move (or just a pivot). In Northby's implementation [25],

each move takes O(n'~) for a cluster with n atoms. In [22], we have reduced the
time complexity of each move to O(n}) for a cluster with n atoms. Therefore, with
the supercomputer CM-5, we have been able to get computational results for n as
large as 1000.

It should be noted that in [5, 6] general purpose global optimization algorithms
have been proposed which can, without knowledge on the lattice structure, find

194 xuE

minimizers as good as the ones reported by Northby for the Lennard-Jones clusters
of size in the range n < 147, with only a few exceptions, where minimizers almost
as good as the ones reported by [25] are found. To the best of our knowledge,
these are the most successful applications of general purpose global optimization
algorithms on the Lennard-Jones clusters.

In this paper, we further reduce the time complexity of each move in Northby's
lattice to O(n~), apply our two-level simulated annealing algorithm to the lat-
tice search problem, and implement the algorithm on Thinking Machines CM-5.
Because of the reduced time complexity of the pivot algorithm and the efficient
implementation of the two-level simulated anneMing algorithm, we are able to get
satisfactory results for the discrete minimization problem for n --- 100,000 on the
CM-5 in a relatively shol't time. These lattice minimizers are then relaxed to obtain
ground states for the Lennard-Jones clusters. Particularly, for n < 1000, we have
found lower energies than the ones reported in [22].

4.1. L e n n a r d - J o n e s P o t e n t i a l a n d t h e I 6 ' a n d F C L a t t i c e s

Given n atoms (points), p l , p 2 , ' " , p ~ , in 3 dimensional Euclidean space, the total
2-body potential energy function is defined as

n j - 1

v (p) = v(llp - p d l 2) , (1)
j----2 i = 1

where v(r) is the Lennard-Jones potential function ([12]) defined as

1 2
v(r) = r6 �9 (2)

The problem is to find a configuration (positions for the n points) such that the
total potential energy function V,~ (p) is minimized.

For each pair, the Lennard-Jones potential function v(r) = r - 1 2 - 2r -6 is plotted
in Figure 4. It has only one local minimizer at r = 1 (which is also the global one)
with function value - 1 . As r approaches 0, v(r) approaches +oc. As r approaches
+co, v(r) saturates to 0. Note that the function v(r) is a unimodal nonconvex
function.

Finding a global minimizer of Vn(p) is extremely difficult except for very small
cluster sizes. The difficulty is due ~to the fact that while it is always possible with
a supercomputer and a local minimization algorithm (e.g. quasi-Newton method)
to relax any initial configuration to some local minimizer, unless the starting con-
figuration is in the catchment basin of the global minimizer, the minimizer found
may not be the global minimizer. Hoare has shown that the number of local min-
ima in the potential energy surface of an n-atom Lennard-Jones cluster is about
O(e'~2). Thus, it is impractical to perform an undirected search for all local minima
of the potential function in order to find the globM minimizer, except for very small
clusters.

M O L E C U L A R C O N F O R M A T I O N ON T H E CM-5 195

76•
T T 1 3 - - r r

0 1 2 3 4 5 6 7 8

pair distance r

Figure ~. L e n n a r d - : I o n e s pair potential function

Very often, one can better solve a problem if he/she has some physical insight
into the problem. Here again, it is the case. Chemical physicists have learned from
previous research that the "ground states" of Lennard-Jones clusters exhibit certain
kind of lattice structures. So far, the most successful algorithms for computing
ground states of Lennard-Jones clusters are based on lattice search followed by local
minimization from the lattice minima, represented by the Northby algorithm [25].
As stated in [22], a critical assumption for lattice search based algorithms is that a
well-defined set of laltice structures contains at least one initial cluster configuration
which relaxes to the ground slate. As described and supported by computational
results in [25], the I C and F C lattices to be described below are well-defined lattice
structures for the pure Lennard-Jones clusters. We believe that in most of the cases,
the relaxation of a global lattice minimizer will result a configuration with a lower
energy than the relaxation of a non-global lattice local minimizer.

The icosahedral lattice [8, 14, 25] introduced by Mackay can be described as 20
slightly flattened tetrahedrally shaped fcc units with 12 vertices on a sphere centered
at the origin. The ratio between the interatomic spacing in the 20 equilateral outer

faces and the radial lines connecting the 12 vertices with the origin is ~ / 2
l + c o s (~) '

which is approximately 1.05146.
For the I C lattice, the total number of lattice on each layer is 1, 12, 42, 92, . . . ,

10i 2 + 2, �9 �9 -. Therefore the number of lattice points in the sequence of closed shell
I C lattice is 1, 13, 55,147, . . . , 1 + (10i 3 + 15i 2 + 110/3 ,

196 xuE

Figure 5. A n IC l a t t i ce w i t h 147 l a t t i c e p o i n t s

1)

Figure 6. A n F C l a t t i ce w i t h 127 l a t t i c e p o i n t s

MOLECULAR CONFORMATION ON THE CM-5 197

The F C lattice consists of a smaller IC lattice enclosed by a layer of stacking
fault icosahedral shell. This shell has 12 vertices and 20 facets as described above.
However, it has fewer filling lattice points on each facet. These lattice points are
located at the stacking fault positions of the IC lattice shell. The number of lattice
points on the outer layer of an F C lattice is 1, 12, 32, 72, 132, --., 10i(i - 1) + 12,
�9 �9 .. Therefore the number of lattice points in the sequence of closed shell F C lattice
is 1, 13, 45, 127, .- . , 11 + (10i 3 + 15i 2 - 19i)/3,

Figure 1 of [25] best describes how each of the facets are filled with other lattice
points for both the IC shell and the F C shell. An IC lattice with 147 points is
i l lustrated in Figure 5 and an F C lattice with 127 points is illustrated in Figure 6.
[22] also describes how to generate these lattices�9

4.2. P i v o t i n g on t h e L a t t i c e

In this subsection, we describe Northby 's pivot algori thm for finding a lattice local
minimizer. We will also introduce a simple data structure which reduces the t ime
complexity of a single pivot from O(n@) to O(n~).

Suppose that we want to find a lattice local minimizer of an n-a tom cluster.
Let us assume that we have chosen one of the two types of lattices for the lattice
minimization. First, find the largest IC lattice which contains fewer than n points
(if one of the IC lattices has exactly n points, we simply put all n a toms on the
lattice points of that lattice and quit). Call this IC lattice the core and let NcoTe
and Ieo~e be the number of points in this IC lattice and the index set of this IC
lattice, respectively. Next, find the next layer of IC (or FC) lattice which contains
N ~ f (surface) points. Let I~=~ I be its index set. If Neo~e + N~=~f = n, we simply
put all n a toms on the lattice points of the lattice and quit.

An initial configuration can be constructed by filling Ncore atoms into the core
lattice and randomly put the remaining (n - Neore) atoms onto the N~=~f surface
lattice sites. This is equivalent to parti t ioning the index set I~=~f to two subsets
i f i l l e d 1-v aear~t f i l l e d ,~rf and ~ , ~ f such that [I ~ f I = n - Nco~e and that site i E I,~rf is filled

T f i l l e d with an a tom if and only if i E , ~] .
Northby [25] computes the interaction mat r ix VP(i , j), the pair interaction be-

tween an a tom on site i and one on site j at the very beginning of the algorithm
and stores it as a lookup table. After this is done, Northby 's pivot algorithm for
finding a lattice local minimizer can then be summarized as follows.

A l g o r i t h m A : N o r t h b y ' s P i v o t A l g o r i t h m fo r L a t t i c e M i n i m i z a t i o n

1. {Find the most loosely bound atom}
�9 i f i l l e d Find Zl E ~Tf such that

198 xuE

.

.

itoose = arg max {
, f i l l e d

z6I ! jEIeore
VP(i, j) + E VP(i, j)}. (3)

fri l led

j # i

Site izoo~ is called the most loosely bound filled site and the atom at that site
is called the most loosely bound atom. Let gainloose be the maximum function
value that the maximization problem in (3) achieves at iloose. Apparently, this is
the total contribution that the atom at site izoo~ has towards the total potential
energy.

{Find the most tightly binding vacant site}
lvacan~ such that Find itight E ~surf

i..h,=arg E ve(i,j)+
f j E I

E
Trilled

j E ~,urf
j Ts itoo.~

VP(i , j) } . (4)

Site itight is called the most tightly binding vacant site. Let gaintight be the
minimum function value that the minimization problem in (4) achieves at itight.
This is the new contribution that the atom at site i~oos~ has towards the total
potential energy when moved to site itight.

{Pivot on the Lattice}
If gaintight -- gainloo,~ < 0 then move the atom at site iloo,~ to site i~iah ~ and
goto step 2. Otherwise, the current configuration is a lattice local minimizer.

Figure 7. Northby's pivot algorithm

Moving an atom from one lattice site to another is called a move (or just a pivot)
in the Northby algorithm. Each time an atom is added or removed from a site the
program recalculates from V P the total potential V, and the energy change DV(i)
associated with adding or removing another atom at each site. Although Northby
does not specify clearly the time complexity of each move, we can easily deduce from
the above description that the time complexity for choosing the most loosely bound
atom is O(n(n - Nco~)) and the time complexity for choosing the most tightly
binding vacant site is O (n (N ~] - (n - N~o~))). Therefore the t ime complexity for

each moveis O(nNsurf). Since Nsurf = O(n}) and that Nco~ < n < Ncore+Nsurf,
the time complexity of each move in Northby's implementation is O(n@). It should
also be noted that in Northby's implementation, O(n 2) storage is required to store
the interaction matr ix VP.

In [22], we have carefully studied Northby's algorithm. We note that the interac-
tion matr ix V P only speeds up the computation by a constant factor (of about 4) at

MOLECULAR CONFORMATION ON THE CM-5 199

the cost of O(n 2) storage. Therefore, we have dropped the interaction matrix�9 In-
stead, we have introduced a double precision array CORE(O :N~r f) which stores
the value ~ i d e z i#j VP(i , j) in CORE(O) and the values }-~jel VF(i , j) in
CORE(i) for each i �9 I ,~] . With the aid of this simple data structure, we have

reduced the t ime complexity of:each move to O(nk).
In this paper, we further reduce the t ime complexity of each move to O(n~) by

introducing a new O(n~) storage data structure.
This new data structure is a double precision array SURF(Nsurf). Given an

i f i l l e d 4 initial configuration represented by . ~] , the array SURF is initialized in O(n~)
t ime so tha t SURF(i) = ~jez~,~e j e iVP(i , j) for each i �9 /~u~f. The value

CORE(i) + SURF(i) is the contribution of the a tom which is placed at the ith
f i l l e d surface lattice point(if i �9 I, urf) or the amount that will be added to the total

potential energy if a new a tom is to be placed at site i of the surface lattice(if
i �9 I :~y~ t) . After this initialization is done, the most loosely bound a tom can be

2 . l _ f i l i e d T v a c a n t found in O(n-~) time; if we delete Zloos~ from "surf and put it in "~urf , it requires

O(n-~) t ime to update the array SURF; then the most t ightly binding vacant site
2 - [f i l l e d can be computed in O(n~) time; to insert itight into ~u~f and update the array

SURF again takes O(n~) time. Therefore the t ime complexity per move is reduced
2

to O(ng). Our new pivot algorithm can now be described as follows.

A l g o r i t h m _ 5 : M o d i f i e d N o r t h b y P i v o t A l g o r i t h m

1. {Find the most loosely bound atom}
�9 i f i l l e d Find Ztoo,e �9 surf such that

itoose = arg max {CORE(i) + SURF(i)}. (5)
�9 J i l l e d ~EIsur.f

.

.

Let gainloo~e be the m a x i m u m function value that the maximizat ion problem
in (5) achieves at iloo~e.

{pick up the most loosely bound atom}
�9 I f i l l e d Drop ~oo~ from surf and insert it into r,~e~r~t l~u~f . Update the array SURF in

the following way: For each i E Isurf and i 5s itoose, decrease SURF(i) by
v(riz i), where v(-) is the Lennard-Jones pair potential and ri, ~ is the
Euclidean distance between site itoose and site i on the surface lattice�9

{Find the most tightly binding vacant site}
�9 I l i l l e d

F i n d Z t i g h t �9 s u r f such t h a t

it@he = arg min {CORE(i) + SURF(i)}. (6)

Let gaintight be the min imum function value that the minimization problem in
(6) achieves at itight.

200 xuE

4. {put the atom at the most tightly binding vacant site}
Drop itight from 1-vacant; T.f illed ~s~] and insert it into ~u~] - Update the array S U R F
in the following way: For each i E I ~ / and i 5s itight, increase S U R F (i) by

5. {Check for stopping rule}
If gain~ight --gainloo~ > 0 then stop, this is a lattice local minimizer; otherwise,
goto step 1.

Figure 8. Modified Northby's pivot algorithm

4.3. Lattice Search b y T w o - L e v e l Simulated Anneal ing

In the previous subsection, we have made the pivot very cheap and thus finding a
lattice local minimizer has also been made less costly. Therefore, the lattice search
problem in Molecular Conformation is an ideal application of our two-level simu-
lated annealing algorithm which has been introduced in section 2. The algorithm
is described as follows.

Algorithm_6: Lattice Search by Two-Level Simulated Anneal ing

1. {Initialization}
Find the largest I C lattice which contains at most n points and call this the
core lattice. Let Ieor~ be the index set of the core and define Noose =]Ico~]. If
Neo~e = n, put the n a toms on the core lattice and stop.

Find the next I C o r F C lattice shell (depending on the lattice we are using),
let I~urf be its index set and define Nsu~.f = I I s~ /] . Define N = Neo~ + N~,~y
as the total number of points in the lattice. If N = n, put the n a toms on the
N lattice points and stop.

Fill the Nr sites in the core with Noose atoms. Assign the remaining n - Nr
atoms randomly onto the surface sites. This assignment parti t ions the index set

Trilled l v a c a n t Isury into two subsets ~ur] and ~sury which corresponds to the filled surface
sites and the vacant surface sites, respectively.

In O(n 2) time, compute the values of the array C O R E In O(n~) time, compute
the values of the array S U R F . Define the 0-1 array Zold with index set I ~]

i f i l l ed according to the above partition: Xol~(i) = 1 if and only i E "sur$ �9 Define
f(Xold) to be the total potential energy function of the cluster resulted by filling
Ncore atoms in the core sites and the rest n - Neo~e atoms in the surface sites
determined by XoZd.

MOLECULAR CONFORMATION ON THE CM-5 201

.

Set T = 10, a = 0.5, xbe,, = :Cold. Apply Algorithm_5 to find the lattice local
minimizer Xold starting from Xold. Set fold = f(Xotd). Set fb~,t = ford.

{ Two-Level Simulated Annealing)
repeat

for i := 1 to 1530 {number_ofiterations)
Xnew := perturbation(xotd);
Compute x,~o and fnew : = f(Xnew);
generate a random number rand E (0, 1);
if ((fnew < fold) or (rand < exp((fold -- f n e w) / T))) then

:Cold : = Xnew ; fold : = fnew;
if (f ~ < fb~,t) then

Xbest : = Xnew, fbes~ := fnew;
endif

endif
endfor
T : : o~T;

until (stopping criterion is met)
Output xb~t and fbe~ as the best known solution and objective function value.

Figure 9. L a t t i c e s e a r c h b y t w o - l e v e l s i m u l a t e d a n n e a l i n g

The stopping criterion we have used here is that the best known function value
has not been improved for two consecutive for-loops. Of course, other stopping
criterion can also be used here.

We would like to point out here that the value C O R E (O) is only necessary if we
want to get the total potential energy while pivoting. Without it, the algorithm
works correctly to locate the (local or global) lattice minimizers.

4.4. I m p l e m e n t a t i o n on t h e C M - 5

The lattice search by two-level simulated annealing algorithm described in the pre-
vious subsection has been implemented on the Thinking Machines CM-5.

The CM-5 extends TMC's existing Data Parallel programming model from Sin-
gle Instruction-Multiple Data (SIMD) to Single Program-Multiple Data (SPMD).
It can support both a highly synchronized Data Parallel/SIMD paradigm and a
message passing paradigm which a MIMD machine would provides.

The CM-5 allows a control processor (CP) to control a large number of processing
elements (PE's) by down loading to each PE an identical copy of the same program.
The PE's then either execute the same code in a SIMD mode, or take different
branches in that code, thus effectively emulating MIMD.

Interprocessor communications are supported through two networks: the Data
Network (DN) and the Control Network (CN). The message passing library (CMMD)
is used to control and coordinate program streams running on different PE's. For

202 xuE

more detailed information about the CM-5, readers are referred to the Thinking
Machines publications [30, 31].

The machine that we have used at the Army High Performance Comput ing Re-
search Center /Minnesota Supercomputer Center is a 544 PE machine. The system
can be configured into two or three parti t ions of either 32 and 512 PE's , or 32,256,
256 PE's . The PE 's are addressed from 0 to 31, or 255, or 511, depending on the
different partitions. Each PE is a 33 MHz SPARC-2 chip with 16 MB local memory.
Interprocessor communication has a bandwidth of 20 MB/sec within a group of 4
nearest neighbors (e.g., PE 's 0, 1, 2, 3, or PE's 4, 5, 6, 7, etc.), 10 MB/sec within a
group of 16 of second nearest neighbors (e.g., PE 's 0-15, or PE 's 16-32, etc.), and
5 MB/sec between any two PE's on the system. The machine is running under
CMOST 7.1.1. In the future, each PE will be upgraded to 32-MB of memory and
the SPARC will be augmented with 4 vector units.

Our two-level simulated annealing algorithm has been implemented on the CM-
5 in a master-slave mode. One PE (number 0 in this case) serves as the master
PE, and all other PE 's serve as slave PE's . The master PE is used to emulate the
sheared memory assumed in the description of Algorithm_3. Each slave PE asks for
a job from the master, performs a perturbation, lattice search, and decides whether
to accept or reject the new solution. I t then sends the computat ion results back to
the master and asks for a new job until it is told to stop. The master PE checks
incoming messages from any node. sends out new jobs to and receives computat ion
results from the slaves, Whenever a new solution is accepted by the corresponding
slave, the master also accepts that solution and makes it the new Current solution.
The ten (or fewer) best solutions are stored in the master node. If stopping criterion
is met, it signals the slaves to stop and sends the computed results to the host.

This turns out to be very efficient both in solving the problem and in achieving
a good flop rate on the machine. In particular, we have got satisfactory results for
the lattice minimization problem for cluster sizes as large as 100,000 and achieved
a 0.8 giga flop/sec in double precision operations which is about one third of the
theoretical peek performance of the machine as it is. Computa t ional results are
presented in the next section.

5. C o m p u t a t i o n a l R e s u l t s

Computa t ional results on lattice minimization are obtained on the CM-5 at the
A H P C R C / M S C operated under the CMOST 7.1.1 operating system. The programs
are written in F77 and employ the CMMD message passing library. The results
are presented in three different ranges of cluster sizes: 100 - 1000, 1000 - 10000,
and 10000 - 100000. The lattice min ima in the first two cluster ranges are then
relaxed on the Cray-XMP supercomputer at the A H P C R C / M S C using a Minpack2
subroutine: the Limited Memory BFGS code [21]. Since our main interested here
is in the lattice minimization, t iming results are reported only for the CM-5.

Lattice minimization results for cluster ranges in [10000, 100000] are obtained on
the 512 part i t ion in dedicated mode. These results are presented in Table 1.

MOLECULAR CONFORMATION ON THE CM-5 203

Table 1. Computat ional results for cluster size in [1O000, 100000]
n La t t funcla t nmoves seconds m] l o p / s e c

10000 I C -72803.2969 2105762 90.5828 692
20000 IU -147903.7031 11764754 815.4856 704
30000 I C -223614.1094 8762607 842.2309 690
40000 I C -299660.7188 14371260 1615.5211 708
50000 I C -376019.0312 6472805 743.7345 818
60000 I C -452480.1250 14383802 2162.8548 676
70000 F C -529128.5000 8425552 1424.6277 674
80000 F U -605586.3125 14027870 2473.0903 692
90000 IU -682341.1875 14713350 3471.4590 573

100000 F U -759190.1250 21269830 4979.7554 597

N o t e t h a t t h e l owes t l a t t i c e p o t e n t i a l e n e r g y v a l u e s a r e o b t a i n e d o n t h e I C l a t t i c e

e x c e p t fo r c l u s t e r s izes 70000 , 80000 , a n d 100000, w h e r e t h e l owes t l a t t i c e p o t e n t i a l

e n e r g y v a l u e s a re o b t a i n e d o n t h e F C l a t t i c e . C o l u m n 3 o f t h e t a b l e r e p o r t s t h e

l o w e s t l a t t i c e p o t e n t i a l e n e r g y v a l u e s c o m p u t e d . C o l u m n 4 r e p o r t s t h e t o t a l n u m b e r

o f m o v e s (p i v o t s) r e q u i r e d b y t h e a l g o r i t h m . C o l u m n 5 r e p o r t s t h e m a x i m u m

e l a p s e d s e c o n d s o n t h e m a s t e r P E . C o l u m n 6 r e p o r t s t h e m e g a f lops (in 6 4 - b i t

o p e r a t i o n s) p e r s e c o n d s u s t a i n e d in e x e c u t i n g t h e p r o g r a m . N o t e t h a t a r a t e of 818

m e g a f lop p e r s e c o n d is s u s t a i n e d o n t h e 5 0 0 0 0 - c l u s t e r p r o b l e m .

Table 2. C o m p u t a t i o n a l results for cluster size in [100, 1000]
n La t t]unclat funcopt nmoves seconds m f l o p / s e c

100 I C -522.2946 -557.0398 85114 9.22 14
200 I C -1147.5015 -1229.1848 178713 10.06 46
300 I C -1809.5105. -1942.1068 49346 14.07 10
400 I C -2465.6689 -2650.4315 272438 14.81 73
500 I C -3144.3364 -3382.6935 312777 17.26 72
600 F C -3825.7654 -4119.2441 161639 17.85 45
700 I C -4513.9102 -4862.3946 686757 14.57 264
800 I C -5206.5977 -5609.7262 274074 2.44 628
900 I C -5916.9136 -6377.4914 88209 11.90 44

1000 I C -6604.6631 -7121.8967 240448 15.71 117

Table 3. Computat ional results for cluster size in [1000, 10000]
n Lat t]uncla t]uncopt nmoves seconds m f l o p / s e c

1000 I C -6604.6631 -7121.8967 239510 17.72 103
2000 I C -13741.7510 -14837.5681 204325 14.74 139
3000 I C -20960.8281 -22652.0670 462310 15.85 446
4000 F C -28267.5215 -30562.3114 1073377 56.52 323
5000 I C -35650.5781 -38549.4018 328537 38.18 161
6000 I C -42977.4766 -46475.4712 3106811 174.32 388
7000 1C -50367.2109 -54479.7056 1501368 82.04 468
8000 I C -57881.3906 -62611.9024 2048383 134.16 391
9000 I C -65230.0547 -70567.5777 3268319 179.46 539

10000 I C -72803.2969 -78773.5292 2105762 90.58 692

C o m p u t a t i o n a l r e s u l t s for t h e [100, 1000] a n d t h e [1000, 10000] r a n g e s a re p re -

s e n t e d in T a b l e s 2 a n d 3. T h e s e r e s u l t s a r e o b t a i n e d in a t i m e s h a r i n g m o d e , w i t h

204 xu~

variable number of users (from one to three) sharing the machine during the exe-
cution of the program. Therefore only the first 5 columns are important in these
two tables. The last two columns are included for readers who are interested in
the performance of the algorithm/machine in a time sharing environment. T h e 4th
column in Table 2 and Table 3 reports the lowest potential energy function values
obtained after the relaxation from the lattice minima. Note that for cluster sizes
700, 800, and 1000, we have obtained lower energy values than the ones reported
in [22].

-I00

-200s

-300(

-4OO(

-6000

-70O(

-800C
100

" '%" *

"... §

, ,

200 3 4 500 600 700 800 900 1000

cluster size

Figure 10. B e s t k n o w n f u n c t i o n v a l u e a s a f u n c t i o n of c l u s t e r s i z e : 1 0 0 - 1 0 0 0 , d o t t e d
l i n e p l o t s f u n c t i o n v a l u e s b e f o r e r e l a x a t i o n , s o l i d l i n e p l o t s f u n c t i o n v a l u e s a f t e r
r e l a x a t i o n

The lowest potential energy function values for the different cluster size ranges
are illustrated in Figures 10-12. The minima before relaxation (lattice minima) are
plotted in dotted lines. The function values after the relaxation are plotted in solid
lines. Although the dependence of the lowest energy values found on the cluster
size looks like linear, we believe (from study of the tables) that the dependence is
somewhat superlinear. This suggests that the minimum inter-atom distance could
be very small in the ground state configuration if the cluster size becomes very large
because otherwise the minimum energy will have a linear lower bound [35].

The configuration of the putative global minimizer for the 200-cluster is illus-
trated in Figure 13. The potential energy function value for this configuration is
-1229.1848. Artificial inter-atom bonds between nearest neighbors are added to
increase visibility.

MOLECULAR CONFORMATION ON THE CM-5 2 0 5

xlO 4
0

-1 ""'-..�9149

-2 "..,,.

4 '..%

-6

-7

. . , , , _ , .

1~0 21300 3 O0 4 0 0 0 50011 60110 7 0 8000 901)0 101~0 o

clus~r size

Figure 11. B e s t k n o w n f u n c t i o n v a l u e a s a f u n c t i o n o f c l u s t e r s i z e : 1 0 0 0 - 1 0 0 0 0 , d o t t e d
l i n e p l o t s f u n c t i o n v a l u e s b e f o r e r e l a x a t i o n , s o l i d l i n e p l o t s f u n c t i o n v a l u e s a f t e r
r e l a x a t i o n

xlO 5
o

"|~''.........

-2 '%.1

4 ,
2

~ -4

"'.%�9

'.%

i f

3 4

"%.
".......

"....
"...

"I.. ".....

ctusler size

".....

"..%.

i i
8 9 I0

xlO 4

Figure 12. B e s t k n o w n f u n c t i o n v a l u e a s a f u n c t i o n o f c l u s t e r s i ze : 1 0 0 0 0 - 1 0 0 0 0 0 ,
b e f o r e r e l a x a t i o n

206 XUE

(

l

Figure 13. Putative global minimizer for the 200-cluster

6. Conclus ions

In this paper, we have presented a new kind of simulated annealing algorithm -
the two-level simulated annealing algorithm for solving certain class of hard combi-
natorial optimization problems. A parallel version of this algorithm has also been
presented. These algorithms are then applied to the Molecular Conformation prob-
lem and implemented on the Thinking Machines CM-5. We have been able to get
better results and get satisfactory results for much larger problems with our paral-
lel two-level simulated annealing algorithm. We believe that our parallel two-level
simulated annealing algorithm will find more and more applications in other mod-
els of Molecular Conformation problems and in hard combinatorial optimization
problems from Operations Research and Computer Aided Design.

A c k n o w l e d g e m e n t

This research was supported in part by the Army Research Office contract num-
ber DAAL03-89-C-0038 with the University of Minnesota Army High Performance
Computing Research Center. I am grateful to Dr. Jorge Mor@ from Argonne
National Laboratory for introducing me to the wonderful field of Molecular Con-
formation. I would like to thank Dr. D.G. Vlachos for stimulating discussions and
for giving me a copy of reference [25]. Thanks are due to Drs. Panos Pardalos,
Juan Maza, Jill Mesirov, Gorge Wilcox, and David Ferguson for helpful discussions.

MOLECULAR CONFORMATION ON THE CM-5 2 0 7

Finally, I would like to thank Drs. Gorge Sell and Don Austin for their consistent
support and encouragement.

R e f e r e n c e s

[1] S.G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall International, Inc.,
1989.

[2] C.G.E. Boender and A.H.G. Rinooy Kan, Bayesian Stopping Rules for Multistart Global
Optimization Methods~ Mathematical Programming, Vol. 37(1987), pp. 59-80.

[3] R.J. Brouwer, P. Banerjee, A Parallel Simulated Annealing Algorithm for Channel Routing
on a Hypercube Multiprocessor, Proceedings of 1988 IEEE International Conference on
Computer Design, pp. 4-7.

[4] J.P. Brmlet, A. F.delman, J.P. Mesirov, An Optimal Hypercube Direct N-body Solver on
the Connection Machine, Proceedings of Supercomputing'90, pp. 748-752, IEEE Computer
Society Press 1990.

[5] R.H. Byrd, E. Eskow, R.B. Schnabel, and S.L. Smith, Parallel Global Optimization: Numer-
ical Methods, Dynamic Scheduling Methods, and Application to Molecular Configuration,
Technical Report CU-CS-553-91, University of Colorado at Boulder, Department of Com-
puter Science, Boulder, CO., October 1991.

[6] R.H. Byrd, E. Eskow, R.B. Sclmabel, Global Optimization Methods for Molecular Colffig-
uration Problems, Presented at the Fourth SIAM Conference on Optimization, May 11-13,
1992, Clficago, IL.

[7] R.D. Chamberlain, M.N. Edelman, M.A. Franklin, E.E. Witte, Simulated Annealing on a
Multiprocessor, Proceedings of 1988 IEEE International Conference on Computer Design,
pp. 540-544.

[8] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag,
1988.

[9] A. Corana, M. Marchesi, C. Martini, and S. Ridella, Minimizing Multimodal Fmactions of
Conthmous Variables with the "Simulated Annealing" Algorithm, ACM Transactions on
Mathematical So~ware, Vol. 13(1987), pp. 262-280.

[10] F. Darema, S. Kirkpatrick, V.A. Norton, Parallel Techniques for Chip Placement by Simu-
lated Annealing on Shared Memory Systems, Proceedings of 1987 IEEE International Con-
ference on Computer Design, pp. 87-90.

[11] J. Farges, M.F. De Feraudy, B. Raoult and G. Torchet, Cluster Models Made of Double
Icosahedron Units, Surface Science, Vol. 156(1985), pp. 370-378.

[12] I.Z. Fisher, Statistical Theory of Liquids, University of Chicago Press, 1964.

[13] D.G. Garrett, K.D. Kastella, D.M. Ferguson, New Results on Protein Folding from Simulated
Annealing, submitted to Journal of the American Chemistry Society, 1992.

[14] M.R. Hoare, Structure and Dynamics of Simple Microclusters, Advances in Chemical Physics,
Vol. 40(1979), pp. 49-135.

[15] J. Damla Honeycutt and Hans C. Andersen, Molecular Dynamics Study of Melting and
Freezing of Small Lennard-Jones Clusters, Journal of Physical Chemistry, Vol. 91(1987), pp.
4950-4963.

[16] L. Ingber, Very Fast Simulated Realmealing: A Comparison, Mathematical and Computer
Modeling, Vol. 12(1989), pp. 967-973.

[17] L. hlgber, Genetic Algoritluns and Very Fast Simulated Reamleallng: A Comparison, T o
appear in Mathematical and Computer Modeling, 1992.

208 XUE

[18] R.S. Judson, M.E. Colvin, J.C. Meza, A. Huffer, and D. Gutierrez, Do Intelligent Colffigu-
ration Search Teclmiques Outperform Random Search for Large Molecules?, Sandia Report
SAND91-87~O, Sandia National Laboratories, Center for Computational Engineering, Liv-
ermore, CA., December 1991.

[19] S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vecchi, Optimizationby Simulated Am~eallng, Science,
Vol. 220(1983), pp. 671-680.

[20] S. Kirkpatrick, Optimization by Simulated Amlealing: Quantitative Studies, Journal of Sta-
tistical Physics, Vol. 34(1984), pp. 975-986.

[21] D.C. Liu and J. Nocedal, On the Linfited Memory BFGS Method for Large Scale Optlxniza-
tion, Mathematical Programming, Vol. 45 (1989), pp. 503-528.

[22] R.S. Maier, J.B. Rosen, G.L. Xue~ A Discrete-Continuous Algorithm for Molecular Energy
Minimization, in Proceedings of Supercomputing'92, Minneapolis, November 16-20~ 1992,
pp. 778-786.

[23] N. Metropolis, A. Rosenbluth, A. Teller, E. Teller, Equation of Several State Calculations
by Fast Computing Machines, Journal of Chemical Physics, Vol. 21(1953), pp. 1087-1892.

[24] S. B[ahar, S. Salmi, E. Shragowitz, Experiments with Simulated Annealing, 22nd Design
Automation Conference, 1985, pp. 748-752.

[25] J.A. Northby, Structure and Binding of Lemlard-Jones Clusters: 13 < n < 147, Journal of
Chemical Physics, Vol. 87(1987), pp. 6166-6178.

[26] C.P. RaviKumar, L.M. Patnaik, Parallel Placement by Simulated Annealing, Proceedings of
1987 IEEE International Conference on Computer Design, pp. 91-94.

[27] D.R. Ripoll, S.J. Thomas, A Parallel Monte Carlo Search Algoritlrm for the Conformationai
Analysis of Protehis, Proceedings A CMJIEEE Supercomputing'90, pp. 94-102.

[28] T. Scldick aald M. Overton, A Powerful Trtmcated Newton Method for Potential Energy
Minimization, Journal of Computational Chemistry, Vol. 8(1987)~ pp. 1025-1039.

[29] David Shalloway, Packet Ammallng: A Deterministic Method for Global Minimization, Ap-
plication to Molecular Colfformation, Recent Advances in Global Optimization, C. Floudas
axld P. Pardaios, eds. Princeton University Press: Princeton, N J, 1991.

[30] Thinking Machines Corporation, CMMD Reference Manual~ Version 1.1, 1992.

[31] Thinking Machines Corporation, CMMD User's Guide, Version 1.1, 1992.

[32] D.G. Vlachos, L.D. Sclm~idt, and R. Aris, Structures of Small Metal Clusters: Phase Tran-
sitions alld Isomerization, Army High Performance Computing Research Center Preprint
91-69, University of Minnesota, Minneapolis, 1991.

[33] D.G. Vlachos~ L.D. Schmidt, and R. Aris, Structures of Small Metal Clusters: Low Tem-
perature Behavior, Army High Performance Computing Research Center Preprint 91-70,
University of Minnesota, Minneapolis, 1991.

[34] L.T. Wille, Minimum-Energy Configurations of Atomic Clusters: New Results Obtained by
Simulated Amlealing, Chemical Physics Letters~ Vol. 133(1987)~ pp. 405-410.

[35] G.L. Xue, R.S. Maier~ J.B. Rosen, Minimizing the Lennard-Jones Potential Function on
a Massively Parallel Computer~ in Proceedings of 1992 ACM International Conference on
Supereomputing, pp. 409-416, ACM Press, 1992.

