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A b s t r a c t .  In  th i s  pa pe r ,  we p ropose  a new k i nd  of s i m u l a t e d  a n n e a l i n g  a l g o r i t h m  cal led two-level 
simulated annealing for  so lv ing  ce r t a in  class of  h a r d  combina to r i a l  o p t i m i z a t i o n  p rob lems .  Th i s  
two-level  s i m u l a t e d  a rmea l ing  a lgor i t lma is less likely to get  s t uck  a t  a non-g loba l  m i n i m i z e r  t h a n  
conven t iona l  s i m u l a t e d  a lmea f ing  a lgor i t lnns .  We also p ropose  a paral le l  vers ion  of our  two-level 
s i m u l a t e d  a imea l l ng  a lgor i t lml  a n d  d iscuss  i ts  efficiency. Tlfis new t echn ique  is t h e n  app l ied  to 
the  Molecula r  Co l f fo rma t ion  p r o b l e m  in  3 d i m e n s i o n a l  Euc l i dean  space.  Ex t ens ive  c o m p u t a t i o n a l  
r e su l t s  on  T t f ink ing  Mach ines  CM-5 are  p re sen ted .  W i t h  t he  full  L e n n a r d - J o n e s  p o t e n t i a l f u n c t i o n ,  
we were able  to get  s a t i s f ac to ry  re su l t s  for p r o b l e m s  for c lus te r  sizes as  la rge  as 100,000.  A p e a k  
r a t e  of  over 0.8 g iga  flop pe r  s econd  in  64-hi t  ope ra t i ons  was s u s t a i n e d  on a p a r t i t i o n  wi th  512 
p roces s ing  e l emen t s .  To t he  be s t  of  our  knowledge ,  g r o u n d  s t a t e s  of  L e n n a r d - J o n e s  c lus te rs  of  
size as  la rge  as t he se  have  neve r  b e e n  r e p o r t e d  before .  

K e y w o r d s :  Molecu la r  con fo rma t ion ,  g lobal  op t imiza t ion ,  s i m u l a t e d  annea l ing ,  para l le l  algo- 
r i t h m s  

1. I n t r o d u c t i o n  

Simulated annealing is a general purpose combinatorial optimization technique that 
has been proposed by Kirkpatrick et al. [19]. This method is an extension of a 
Monte Carlo method developed by Metropolis et al. [23], to determine the equilib- 
rium states of a collection of atoms at any given temperature T. Since the method 
was first proposed in [19, 20], much research has been conducted on its use and 
properties. Some relevant references are: [3, 7, 9, 10, 16, 17, 24, 26]. 

In this paper, we present a new kind of simulated annealing algorithm called two- 
level simulated annealing which is less likely to get stuck at a non-global minimizer. 
Instead of moving from one solution to  another, the two-level simulated anneal ing 
algorithm moves from one catchment basin of a local minimizer to the catchment 
basin of another (or the same) local minimizer. Advantages of this new algorithm 
over conventional simulated annealing algorithms are discussed. A new method of 
parallelizing a sequential simulated annealing (conventional or two-level) algorithm 
is presented next. The parallel algorithm is usually different from the sequential 
algorithm, but follows the same philosophy of simulated annealing algorithms and 
is very efficient. These techniques are then applied to the Molecular Conforma- 
tion problem and implemented in F77 and message passing mode on the Thinking 
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Machines CM-5. We first reduce the time complexity of an algorithm proposed by 
Northby [25] for Molecular Conformation. Then the improved Northby algorithm 
is combined with the two-level simulated annealing algorithm to get satisfactory re- 
sults for Molecular Conformation problems of sizes much larger than ever reported 
before. These computational results demonstrate that  the parallel two-level simu- 
lated annealing algorithm is a very powerful tool for solving certain class of hard 
combinatorial optimization problems. 

The rest of the paper is organized as follows. In section 2, we present the two- 
level simulated annealing algorithm and discuss its advantage over conventional 
simulated annealing algorithms. In section 3, we present a paradigm for parallelizing 
sequential simulated annealing algorithms. In section 4, we present the Molecular 
Conformation problem, the combinatorial optimization problem associated with 
it, Northby's algorithm and its improvement, and a parallel two-level simulated 
annealing algorithm for solving the combinatorial optimization problem. In section 
5, computational results on the CM-5 are presented. In section 6, we make some 
conclusion remarks. 

2. Two-Leve l  Simulated Annealing 

Given a real-valued function f (x)  defined on a feasible domain 7), the general global 
optimization (minimization) problem is to find a point z* E 7) such that  f ( z )  is 
globally minimized at x*, i.e., f(x*) <_ f (z )  for all x E 7). The general global 
optimization problem is stated as follows: 

(P) global min f(x), 
subject to x E 7). 

A point x* E 7) is called a global minimizer of (P) if f(x*) < f (x)  for all z E 7). 
A point z* E 7) is called a local minimizer of (P) if f(x*) _< f (z )  for all x in a 
neighborhood of x*. Here we are interested in finding a global minimizer of (P). 
There have been many approaches to solving (P), e.g., Multistart with Bayesian 
Stopping Rules [2], Genetic Algorithms [17], and Simulated Annealing [19, 20]. In 
this paper, we are interested in simulated annealing like algorithms. 

The basic simulated annealing algorithm as proposed by Kirkpatrick et al. [19, 20] 
for solving (P) is stated in Figure l, where a is a given constant in the interval 
(0, 1), number_of_iterations is a given positive integer, and perturbation() is a 
procedure which generates a new trial point be making a small perturbation from 
the current solution. 

Algorithm_l: Simulated Annealing 
Set T to a positive number (initial temperature). Set Xold to an initial feasible 
solution and compute fold := f(Xold). Set xb~st := Xold and fb~,t : =  fold. 
repeat 
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for i := 1 to number_of_iterations 
Xnew := perturbation(xold); 
A~w := f ( x ~ ) ;  
generate a random number rand E (0, 1); 
if ((f~e~o < fold) or (rand < exp((fold -- f~e~)/T)))  then 

Xold := Xnew; fold := fnew; 
if ( f ,~o < fb~t) then 

xb~,~ := x~ew; fbe,~ := f ~ ;  
endif 

endif 
endfor 
T : :  aT; 

until (stopping criterion is met) 
Output  xb~,t and fbe,t as the best known solution and objective function value. 

Figure 1. Basic simulated annealing algorithm 

A simulated annealing algorithm differs from a conventional iterative improve- 
ment algorithm in that it not only accepts a solution with better objective function 
value but  also accepts a solution with a worse objective function value condition- 
ally. When the temperature T is high, the probability of accepting a solution with 
a worse objective function value is relatively large, making it relatively easy for the 
simulated annealing algorithm to go from the catchment basin corresponding to one 
local minimizer to the catchment basin corresponding.to another local minimizer. 
It is expected that the algorithm will arrive at the catchment basin of the global 
minimizer before the temperature T gets very low. When the temperature T gets 
very low, the algorithm will essentially accept a solution only if the new solution has 
a better objective function value. Therefore, if the algorithm has already arrived 
in the catchment basin of a (global or local) minimizer, it will eventually converge 
to that minimizer. 

This method has been proved quite useful in solving hard problems in combina- 
torial optimization. However, we observe that the simulated annealing algorithm 
as stated above suffers from certain drawbacks as described in the following sce- 
nario: After a large number of iterations (the temperature has already been very 
low), the algorithm arrives at a strictly local minimizer. Unfortunately, this local 
minimizer is not a global minimizer. A small perturbation of this local minimizer 
produces a new solution still in the catchment of this local minimizer. Since the 
local minimizer is a strict one and that  the temperature is low, this move will be 
rejected. The algorithm tries many times to move in vain, and finally stops at this 
non-global solution! 

In certain optimization problems, it might be relatively cheap to perform a local 
minimization from any given feasible point. These are the problems which we are 
interested in. We will propose a two-level simulated annealing algorithm for solving 
this kind of optimization problems. It will be seen that  the new algorithm is less 
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likely to get stuck in the above scenario than conventional simulated annealing 
algorithms. 

Suppose that  we are given problem (P)  and a cheap local minimization algorithm. 
For any given feasible point x E / ) ,  define x to be the local minimizer which the given 
local minimization algorithm will lead to from x. Suppose that  a small per turbat ion 
from x produces y and that  we want to determine whether to accept the move or 
reject it. The conventional simulated annealing algorithm will compare f ( x )  and 
f (y)  to make this decision. We think that  it is is more meaningful to compare f(_x) 
and f (y )  in order to determine whether to accept or reject the move, because we 
are interested in finding local minimizers and therefore a point lying on a hill is 
not of our interest. This idea leads to the following two-level simulated annealing 
algorithm. 

A l g o r i t h m _ 2 :  T w o - L e v e l  S i m u l a t e d  A n n e a l i n g  
Set T to a positive number  (initial temperature) .  Set Xold to an initial feasible 
solution and compute Xold. Set fold := f(Xold); Xbes, := Xo~d; and fb~,* := fold. 
repeat  

for i := 1 to number_of_iterations; 
xnew := perturbation(xoZd); 

: =  

generate a random number  rand E (0, 1); 
if ((f~ew < foZd) or (rand < exp((fold -- fnew)/T))) then 

Xold := x,~ew; fozd := fnew; 
if ( f ~  < fbe~t) then 

xb~t := z , ~ ;  fb~t  := f , ~ ;  
endif 

endif 
endfor 
T := aT; 

until (stopping criterion is met)  
Output  Xb~, and fb~t as the best known solution and objective function value. 

Figure 2. Two-level simulated annealing algorithm 

Our two-level simulated annealing algorithm differs from a conventional simulated 
annealing algorithm in that  it operates on two sequences of iterative points {xk} 
and {xk}. We call {xk} the upper level and {zk} the lower level for the simple 
reason that  the objective function value of xk is lower than or equal to that  of xk. 
The per turbat ion (move) is made on the upper level while the decision of accepting 
or rejecting the move is based on the comparison of the objective function value on 
the lower level. Therefore the algorithm is named two-level simulated annealing. 

Why is a two-level simulated annealing algorithm necessary? Suppose that  a 
small per turbat ion of x produces y. f (y)  may be greater than, equal to, or less than 
f (x) .  This information is useful, but not enough. Even more useful information 
is the answer to the following question: Starting f rom y, will a local minimization 
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algorithm arrive at a better (lower) local minimizer than x, a same local minimizer 
as __x or a different local minimizer with same objective function value as _x, or a 
worse local minimizer than x?  The two-level simulated annealing algorithm looks 
ahead for the latter information before making any decision. In the first two cases, 
the two-level simulated annealing algorithm will accept the move. In the third case, 
it will accept the move conditionally, depending on the random number rand, the 
temperature T, and the difference in f(__x) and f (y) .  When the temperature T gets 
very low, the two-level simulated annealing will still accept moves which lead to 
worse function values, but these moves essentially all lead to better (or same) local 
minimizers. In other words, the two-level simulated annealing algorithm can easily 
climb up the hill of a catchment basin of a minimizer at any temperature,  but is 
very careful in moving into the catchment basin of a worse local minimizer when 
the temperature T is low. 

3. Parallel  S imulated  Annea l ing  

How to implement a (two-level) simulated annealing algorithm efficiently on a given 
parallel machine? 

The easiest way to implement a simulated annealing algorithm on a parallel ma- 
chine is to parallelize the function evaluation phase of a sequential algorithm. In 
this case, the parallel algorithm will be the same as the sequential algorithm, except 
that the function evaluation phase is speeded up. This kind of implementation is not 
efficient unless the function evaluation is the most significant part of the algorithm 
and that  the function evaluation can be parallelized efficiently. 

A second kind of parallel simulated annealing algorithms has been proposed in 
[7]. In [7], the authors present a method for parallelizing the simulated annealing 
algorithm by mapping the algorithm onto a dynamically structured tree of proces- 
sors. They have studied the SA Decision Tree and designed three parallel simulated 
annealing algorithms, namely the Static PSA, the Dynamic Balanced PSA, and the 
Dynamic Unbalanced PSA. However, the speedup one can hope in the worst case for 
the Static PSA on a P processor machine is log 2 P.  For the other two PSA's, vari- 
ous assumptions are required to guarantee a reasonable speedup. There are many 
versions of parallel simulated annealing algorithms. We will not try to mention 
all of them here. In what follows, we will present a parallel (two-level) simulated 
annealing similar to the one proposed in [10]. 

We will present our parallel (two-level) simulated annealing algorithm on a EREW 
MIMD multiprocessors (or tightly coupled machines). This algorithm will be im- 
plemented in a master-slave mode on the Thinking Machines CM-5, a SPMD su- 
percomputer (which can be think of as a loosely coupled machines), to solve the 
Molecular Conformation problem. For terminologies of parallel computers, readers 
are referred to [1]. 

The parallel algorithm that  we are going to describe is a nondeterministic al- 
gorithm in the sense that the parallel algorithm is doing different work than the 
sequential algorithm and that different runs of the program on the same parallel 
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computer will perform slightly different work (especially in a timesharing mode 
like the CM-5). By no means, we claim that determinacy is not important.  We 
do think, however, that our parallel algorithm is efficient and that  it follows the 
philosophy of (two-level) simulated annealing. 

In the following description of our parallel algorithm, T, Xold, Zb~,t, fold, fbest, 
i, and done are global variables. All other variables are local variables, although 
each processor also has a local variable with the same name for each of the global 
variables. 

Algorithm_3: Parallel Two-Level Simulated Anneal ing 
{Initialize global variables} 
Set T to a positive number (initial temperature).  Set Xold to a initial feasible 
solution and compute Xold. Set fold := f(Xold), Xbest : :  Xold, fbest : :  fold, i := 1, 
done := F A L S E .  
rep eat_in_p arallel 

lock(done, i, T, fold, ;gold); 
read(done, i, T, fold, Xold); 
unlock(done, i, T, fold~ Xold); 
if (done = T R U E )  exit repeat_in_parallel loop 
if (meal(i, number_of_iterations) = 0) then 

lock(T);  T :=  unlock(T); 
endif 
lock(i); i := i + 1; unlock(i); 
Xnew := perturbation(xold); fnew := f(Xnew); 
generate a random number rand E (0, 1); 
if ( ( f ~ o  < fold) or (rand < exp((fold -- f ~ ) / T ) ) )  then 

loek(Xold); Xold := X,~,~o; unlock@old); 
lock(fold); fold := f~ew; unlock(fold); 
lock(fb~,~); read(lb,,,); unlock(fb,,t); 
if ( f ~ o  < fbest) then 

lock(Xbest); Xbest := Xnew; unlock(Xbest); 
lock(h , ); := unlock(h . , ) ;  

endif 
endif 
if (stopping criterion is met) then 

lock(done); done : = T R U E ;  unlock(done); 
endif 

endrepeat 
Output  Xbes, and fbes* as the best known solution and objective function value. 

Figure 3. Parallel two-level simulated annealing 
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It should be clear from the description of the algorithm that  two runs of the 
same algorithm on same input problem and same parallel machine may or may 
not produce the same iterative sequence, depending on whether or not all of the 
processors work at the same speed in the two runs. Therefore, in a timesharing 
mode, the iterative sequence obtained from two different runs may be different. 
However, the parallel algorithm still follows the move/evaluate/decide idea followed 
by the sequential (two-level) simulated annealing algorithm. It tries to move from 
one iteration point to another, accepting a better solution, and accepting a worse 
solution with some probability. The parallel algorithm in [7] works the same as the 
sequential algorithm, but at a cost of a lot of wasted computation time. In our 
parallel algorithm, all of the computation provides useful information. There is no 
waste of computer time except the communication time if it is implemented on a 
loosely coupled machine. 

4. M o l e c u l a r  C o n f o r m a t i o n  on  t h e  C M - 5  

The minimization of potential energy functions of clusters of atoms is known as the 
molecular conformation problem. The global minima of potential energy functions 
are of great interests to researchers in chemistry, biology, physics, and optimization. 
One of the fundamental  problems in molecular conformation is the minimization of 
the pure Lennard-Jones potential function [12]. Even this problem has been proven 
to be very hard. Hoare has claimed that the number of local minimizers of a cluster 
of n atoms grows as fast as the function O(en2). Nontheless, many papers have 
been published on computational methods [4, 5, 11, 13, 14, 15, 18, 25, 27, 28, 29, 
32, 33, 34] and putative global minima for cluster sizes as large as n = 150 have 
been reported [14, 25, 29]. 

The most successful algorithm for minimizing Lennard-Jones clusters has been 
Northby's algorithm which first finds a set of lattice local minima and then relaxes 
those lattice minima by continuous minimization. With this algorithm, Northby is 
able to publish putative global minima for cluster sizes ranging from 13 to 150 [25]. 
In Northby's algorithm, the lattice search part is a discrete optimization problem 
(actually a combinatorial one). Therefore in [22], we call this algorithm a Discrete- 
Continuous algorithm. So far, the most computing intensive part in Northby's 
algorithm is in the discrete optimization. And the most computing intensive part 
in Northby's lattice search algorithm is in the search for lattice local minima w h e re  
it pivots from one configuration to another with a better function value. We call 
each of these pivots a move (or just a pivot). In Northby's implementation [25], 

each move takes O(n'~) for a cluster with n atoms. In [22], we have reduced the 
time complexity of each move to O(n}) for a cluster with n atoms. Therefore, with 
the supercomputer CM-5, we have been able to get computational results for n as 
large as 1000. 

It should be noted that in [5, 6] general purpose global optimization algorithms 
have been proposed which can, without knowledge on the lattice structure, find 
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minimizers as good as the ones reported by Northby for the Lennard-Jones clusters 
of size in the range n < 147, with only a few exceptions, where minimizers almost 
as good as the ones reported by [25] are found. To the best of our knowledge, 
these are the most successful applications of general purpose global optimization 
algorithms on the Lennard-Jones clusters. 

In this paper, we further reduce the time complexity of each move in Northby's 
lattice to O(n~), apply our two-level simulated annealing algorithm to the lat- 
tice search problem, and implement the algorithm on Thinking Machines CM-5. 
Because of the reduced time complexity of the pivot algorithm and the efficient 
implementation of the two-level simulated anneMing algorithm, we are able to get 
satisfactory results for the discrete minimization problem for n --- 100,000 on the 
CM-5 in a relatively shol't time. These lattice minimizers are then relaxed to obtain 
ground states for the Lennard-Jones clusters. Particularly, for n < 1000, we have 
found lower energies than the ones reported in [22]. 

4.1. L e n n a r d - J o n e s  P o t e n t i a l  a n d  t h e  I 6 '  a n d  F C  L a t t i c e s  

Given n atoms (points), p l , p 2 , ' " , p ~ ,  in 3 dimensional Euclidean space, the total 
2-body potential energy function is defined as 

n j - 1  

v (p) =   v(llp  - p d l 2 ) ,  (1) 
j----2 i = 1  

where v(r) is the Lennard-Jones potential function ([12]) defined as 

1 2 
v(r)  = r6 �9 (2) 

The problem is to find a configuration (positions for the n points) such that the 
total potential energy function V,~ (p) is minimized. 

For each pair, the Lennard-Jones potential function v(r) = r - 1 2 -  2r -6 is plotted 
in Figure 4. It has only one local minimizer at r = 1 (which is also the global one) 
with function value - 1 .  As r approaches 0, v(r) approaches +oc.  As r approaches 
+co,  v(r) saturates to 0. Note that the function v(r) is a unimodal nonconvex 
function. 

Finding a global minimizer of Vn(p) is extremely difficult except for very small 
cluster sizes. The difficulty is due ~to the fact that while it is always possible with 
a supercomputer and a local minimization algorithm (e.g. quasi-Newton method) 
to relax any initial configuration to some local minimizer, unless the starting con- 
figuration is in the catchment basin of the global minimizer, the minimizer found 
may not be the global minimizer. Hoare has shown that the number of local min- 
ima in the potential energy surface of an n-atom Lennard-Jones cluster is about 
O(e'~2). Thus, it is impractical to perform an undirected search for all local minima 
of the potential function in order to find the globM minimizer, except for very small 
clusters. 
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Figure ~. L e n n a r d - : I o n e s  pair potential  function 

Very often, one can better solve a problem if he/she has some physical insight 
into the problem. Here again, it is the case. Chemical physicists have learned from 
previous research that  the "ground states" of Lennard-Jones clusters exhibit certain 
kind of lattice structures. So far, the most successful algorithms for computing 
ground states of Lennard-Jones clusters are based on lattice search followed by local 
minimization from the lattice minima, represented by the Northby algorithm [25]. 
As stated in [22], a critical assumption for lattice search based algorithms is that  a 
well-defined set of laltice structures contains at least one initial cluster configuration 
which relaxes to the ground slate. As described and supported by computational 
results in [25], the I C  and F C  lattices to be described below are well-defined lattice 
structures for the pure Lennard-Jones clusters. We believe that in most of the cases, 
the relaxation of a global lattice minimizer will result a configuration with a lower 
energy than the relaxation of a non-global lattice local minimizer. 

The icosahedral lattice [8, 14, 25] introduced by Mackay can be described as 20 
slightly flattened tetrahedrally shaped fcc units with 12 vertices on a sphere centered 
at the origin. The ratio between the interatomic spacing in the 20 equilateral outer 

faces and the radial lines connecting the 12 vertices with the origin is ~ /  2 
l + c o s ( ~ )  ' 

which is approximately 1.05146. 
For the I C  lattice, the total number of lattice on each layer is 1, 12, 42, 92, . . . ,  

10i 2 + 2, �9 �9 -. Therefore the number of lattice points in the sequence of closed shell 
I C  lattice is 1, 13, 55,147, . . . ,  1 + (10i 3 + 15i 2 + 110/3  , . . . .  
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Figure 5. A n  IC l a t t i ce  w i t h  147 l a t t i c e  p o i n t s  

1 ) 

Figure 6. A n  F C  l a t t i ce  w i t h  127 l a t t i c e  p o i n t s  
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The F C  lattice consists of a smaller IC lattice enclosed by a layer of stacking 
fault icosahedral shell. This shell has 12 vertices and 20 facets as described above. 
However, it has fewer filling lattice points on each facet. These lattice points are 
located at the stacking fault positions of the IC lattice shell. The number  of lattice 
points on the outer layer of an F C  lattice is 1, 12, 32, 72, 132, --., 10i(i - 1) + 12, 
�9 �9 .. Therefore the number  of lattice points in the sequence of closed shell F C  lattice 
is 1, 13, 45, 127, .- . ,  11 + (10i 3 + 15i 2 -  19i)/3, . . . .  

Figure 1 of [25] best describes how each of the facets are filled with other lattice 
points for both  the IC shell and the F C  shell. An IC lattice with 147 points is 
i l lustrated in Figure 5 and an F C  lattice with 127 points is illustrated in Figure 6. 
[22] also describes how to generate these lattices�9 

4.2.  P i v o t i n g  on  t h e  L a t t i c e  

In this subsection, we describe Northby 's  pivot algori thm for finding a lattice local 
minimizer.  We will also introduce a simple data  structure which reduces the t ime 
complexity of a single pivot from O(n@) to O(n~). 

Suppose that  we want to find a lattice local minimizer of an n-a tom cluster. 
Let us assume that  we have chosen one of the two types of lattices for the lattice 
minimization.  First, find the largest IC  lattice which contains fewer than n points 
(if one of the IC  lattices has exactly n points, we simply put  all n a toms on the 
lattice points of that  lattice and quit). Call this IC lattice the core and let NcoTe 
and Ieo~e be the number  of points in this IC lattice and the index set of this IC 
lattice, respectively. Next, find the next layer of IC (or FC) lattice which contains 
N ~ f  (surface) points. Let I~=~ I be its index set. If  Neo~e + N~=~f = n, we simply 
put  all n a toms on the lattice points of the lattice and quit. 

An initial configuration can be constructed by filling Ncore atoms into the core 
lattice and randomly put the remaining (n - Neore) atoms onto the N~=~f surface 
lattice sites. This is equivalent to parti t ioning the index set I~=~f to two subsets 
i f i l l e d  1-v aear~t f i l l e d  ,~rf and ~ , ~ f  such that  [ I ~ f  I = n - Nco~e and that  site i E I,~rf is filled 

T f i l l e d  with an a tom if and only if i E , ~ ]  . 
Northby [25] computes the interaction mat r ix  VP(i ,  j), the pair interaction be- 

tween an a tom on site i and one on site j at  the very beginning of the algorithm 
and stores it as a lookup table. After this is done, Northby 's  pivot algorithm for 
finding a lattice local minimizer can then be summarized as follows. 

A l g o r i t h m A :  N o r t h b y ' s  P i v o t  A l g o r i t h m  fo r  L a t t i c e  M i n i m i z a t i o n  

1. {Find the most loosely bound atom} 
�9 i f i l l e d  Find Zl . . . .  E ~Tf  such that  
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. 

. 

itoose = arg max { 
, f i l l e d  

z6I ! jEIeore 
VP(i,  j) + E VP(i,  j)}.  (3) 

fri l led 

j # i  

Site izoo~ is called the most loosely bound  filled site and the atom at that site 
is called the most loosely bound atom. Let gainloose be the maximum function 
value that the maximization problem in (3) achieves at iloose. Apparently, this is 
the total contribution that  the atom at site izoo~ has towards the total potential 
energy. 

{Find the most tightly binding vacant site} 
lvacan~ such that Find itight E ~surf 

i..h,=arg E ve(i,j)+ 
f j E I  . . . .  

E 
Trilled 

j E ~,urf 
j Ts itoo.~ 

VP( i , j ) } .  (4) 

Site itight is called the most tightly binding vacant site. Let gaintight be the 
minimum function value that the minimization problem in (4) achieves at itight. 
This is the new contribution that  the atom at site i~oos~ has towards the total 
potential energy when moved to site itight. 

{Pivot on the Lattice} 
If gaintight -- gainloo,~ < 0 then move the atom at site iloo,~ to site i~iah ~ and 
goto step 2. Otherwise, the current configuration is a lattice local minimizer. 

Figure 7. Northby's pivot algorithm 

Moving an atom from one lattice site to another is called a move (or just a pivot) 
in the Northby algorithm. Each time an atom is added or removed from a site the 
program recalculates from V P  the total potential V, and the energy change DV(i) 
associated with adding or removing another atom at each site. Although Northby 
does not specify clearly the time complexity of each move, we can easily deduce from 
the above description that the time complexity for choosing the most loosely bound 
atom is O(n(n - Nco~)) and the time complexity for choosing the most tightly 
binding vacant site is O ( n ( N ~ ]  - ( n -  N~o~))). Therefore the t ime complexity for 

each moveis O(nNsurf). Since Nsurf = O(n})  and that  Nco~ < n < Ncore+Nsurf, 
the time complexity of each move in Northby's implementation is O(n@). It should 
also be noted that  in Northby's implementation, O(n 2) storage is required to store 
the interaction matr ix  VP.  

In [22], we have carefully studied Northby's algorithm. We note that  the interac- 
tion matr ix  V P  only speeds up the computation by a constant factor (of about 4) at 
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the cost of O(n 2) storage. Therefore, we have dropped the interaction matrix�9 In- 
stead, we have introduced a double precision array CORE(O :N~r f )  which stores 
the value ~ i d e z  ..... i#j VP(i , j )  in CORE(O) and the values }-~jel .... VF(i , j )  in 
CORE(i) for each i �9 I ,~] .  With the aid of this simple data structure, we have 

reduced the t ime complexity of:each move to O(nk). 
In this paper, we further reduce the t ime complexity of each move to O(n~) by 

introducing a new O(n~) storage data  structure. 
This new data structure is a double precision array SURF(Nsurf). Given an 

i f i l l e  d 4 initial configuration represented by . ~ ]  , the array SURF is initialized in O(n~) 
t ime so tha t  SURF(i) = ~jez~,~e j e iVP( i , j )  for each i �9 /~u~f. The value 

CORE(i) + SURF(i) is the contribution of the a tom which is placed at the ith 
f i l l e d  surface lattice point(if  i �9 I, urf ) or the amount  that  will be added to the total  

potential  energy if a new a tom is to be placed at site i of the surface lattice(if 
i �9 I :~y~ t ) .  After this initialization is done, the most  loosely bound a tom can be 

2 . l _ f i l i e d  T v a c a n  t found in O(n-~) time; if we delete Zloos~ from "surf and put it in "~urf , it requires 

O(n-~) t ime to update  the array SURF; then the most  t ightly binding vacant site 
2 - [ f i l l e d  can be computed in O(n~) time; to insert itight into ~u~f and update  the array 

SURF again takes O(n~) time. Therefore the t ime complexity per move is reduced 
2 

to O(ng). Our new pivot algorithm can now be described as follows. 

A l g o r i t h m _ 5 :  M o d i f i e d  N o r t h b y  P i v o t  A l g o r i t h m  

1. {Find the most loosely bound atom} 
�9 i f i l l e d  Find Ztoo,e �9 surf such that  

itoose = arg max  {CORE(i) + SURF(i)}. (5) 
�9 J i l l e d  ~EIsur.f 

. 

. 

Let gainloo~e be the m a x i m u m  function value that  the maximizat ion problem 
in (5) achieves at iloo~e. 

{pick up the most loosely bound atom} 
�9 I f i l l e d  Drop ~oo~ from surf and insert it into r,~e~r~t l~u~f . Update  the array SURF in 

the following way: For each i E Isurf and i 5s itoose, decrease SURF(i) by 
v(riz ..... i), where v(-)  is the Lennard-Jones pair potential  and ri, . . . . .  ~ is the 
Euclidean distance between site itoose and site i on the surface lattice�9 

{Find the most tightly binding vacant site} 
�9 I l i l l e d  

F i n d  Z t i g h t  �9 s u r f  such  t h a t  

it@he = arg min {CORE(i) + SURF(i)}. (6) 

Let gaintight be the min imum function value that  the minimization problem in 
(6) achieves at itight. 
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4. {put the atom at the most tightly binding vacant site} 
Drop itight from 1-vacant; T.f illed ~s~]  and insert it into ~u~] - Update  the array S U R F  
in the following way: For each i E I ~ /  and i 5s itight, increase S U R F ( i )  by 

5. {Check for stopping rule} 
If  gain~ight --gainloo~ > 0 then stop, this is a lattice local minimizer; otherwise, 
goto step 1. 

Figure 8. Modified Northby's  pivot algorithm 

4.3. Lattice Search b y  T w o - L e v e l  Simulated Anneal ing 

In the previous subsection, we have made the pivot very cheap and thus finding a 
lattice local minimizer has also been made less costly. Therefore, the lattice search 
problem in Molecular Conformation is an ideal application of our two-level simu- 
lated annealing algorithm which has been introduced in section 2. The algorithm 
is described as follows. 

Algorithm_6: Lattice Search by Two-Level Simulated Anneal ing 

1. {Initialization} 
Find the largest I C  lattice which contains at most  n points and call this the 
core lattice. Let Ieor~ be the index set of the core and define Noose = ]Ico~]. If  
Neo~e = n, put the n a toms on the core lattice and stop. 

Find the next I C  o r F C  lattice shell (depending on the lattice we are using), 
let I~urf be its index set and define Nsu~.f = I I s~ / ] .  Define N = Neo~ + N~,~y 
as the total  number  of points in the lattice. If  N = n, put  the n a toms on the 
N lattice points and stop. 

Fill the Nr sites in the core with Noose atoms. Assign the remaining n -  Nr 
atoms randomly onto the surface sites. This assignment parti t ions the index set 

Trilled l v  a c a n t  Isury into two subsets ~ur] and ~sury which corresponds to the filled surface 
sites and the vacant surface sites, respectively. 

In O(n 2) time, compute the values of the array C O R E  In O(n~) time, compute 
the values of the array S U R F .  Define the 0-1 array Zold with index set I ~ ]  

i f i l l ed  according to the above partition: Xol~(i) = 1 if and only i E "sur$ �9 Define 
f(Xold) to be the total  potential  energy function of the cluster resulted by filling 
Ncore atoms in the core sites and the rest n - Neo~e atoms in the surface sites 
determined by XoZd. 
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. 

Set T = 10, a = 0.5, xbe,, = :Cold. Apply Algorithm_5 to find the lattice local 
minimizer Xold starting from Xold. Set fold = f(Xotd). Set fb~,t = ford. 

{ Two-Level  Simulated Annealing)  
repeat 

for i := 1 to 1530 {number_ofiterations) 
Xnew := perturbation(xotd);  
Compute x,~o and fnew : =  f(Xnew); 
generate a random number rand  E (0, 1); 
if ((fnew < fold) or ( rand  < exp((fold -- f n e w ) / T ) ) )  then 

:Cold : =  Xnew ; fold : =  fnew; 
if ( f ~  < fb~,t) then 

Xbest : =  Xnew, fbes~ := fnew; 
endif 

endif 
endfor 
T : :  o~T; 

until (stopping criterion is met) 
Output  xb~t and fbe~ as the best known solution and objective function value. 

Figure 9. L a t t i c e  s e a r c h  b y  t w o - l e v e l  s i m u l a t e d  a n n e a l i n g  

The stopping criterion we have used here is that the best known function value 
has not been improved for two consecutive for-loops. Of course, other stopping 
criterion can also be used here. 

We would like to point out here that the value C O R E ( O )  is only necessary if we 
want to get the total potential energy while pivoting. Without  it, the algorithm 
works correctly to locate the (local or global) lattice minimizers. 

4.4. I m p l e m e n t a t i o n  on  t h e  C M - 5  

The lattice search by two-level simulated annealing algorithm described in the pre- 
vious subsection has been implemented on the Thinking Machines CM-5. 

The CM-5 extends TMC's  existing Data Parallel programming model from Sin- 
gle Instruction-Multiple Data  (SIMD) to Single Program-Multiple Data  (SPMD). 
It can support both a highly synchronized Data Parallel/SIMD paradigm and a 
message passing paradigm which a MIMD machine would provides. 

The CM-5 allows a control processor (CP) to control a large number of processing 
elements (PE's) by down loading to each PE an identical copy of the same program. 
The PE's  then either execute the same code in a SIMD mode, or take different 
branches in that  code, thus effectively emulating MIMD. 

Interprocessor communications are supported through two networks: the Data  
Network (DN) and the Control Network (CN). The message passing library (CMMD) 
is used to control and coordinate program streams running on different PE's. For 
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more detailed information about  the CM-5, readers are referred to the Thinking 
Machines publications [30, 31]. 

The machine that  we have used at the Army High Performance Comput ing Re- 
search Center /Minnesota  Supercomputer  Center is a 544 PE machine. The system 
can be configured into two or three parti t ions of either 32 and 512 PE's ,  or 32,256, 
256 PE's .  The PE 's  are addressed from 0 to 31, or 255, or 511, depending on the 
different partitions. Each PE is a 33 MHz SPARC-2 chip with 16 MB local memory.  
Interprocessor communication has a bandwidth of 20 MB/sec within a group of 4 
nearest neighbors (e.g., PE 's  0, 1, 2, 3, or PE's  4, 5, 6, 7, etc.), 10 MB/sec within a 
group of 16 of second nearest neighbors (e.g., PE 's  0-15, or PE 's  16-32, etc.), and 
5 MB/sec between any two PE's  on the system. The machine is running under 
CMOST 7.1.1. In the future, each PE will be upgraded to 32-MB of memory  and 
the SPARC will be augmented with 4 vector units. 

Our two-level simulated annealing algorithm has been implemented on the CM- 
5 in a master-slave mode. One PE (number 0 in this case) serves as the master  
PE, and all other PE 's  serve as slave PE's .  The master  PE is used to emulate the 
sheared memory  assumed in the description of Algorithm_3. Each slave PE asks for 
a job from the master,  performs a perturbation,  lattice search, and decides whether 
to accept or reject the new solution. I t  then sends the computat ion results back to 
the master  and asks for a new job until it is told to stop. The master  PE checks 
incoming messages from any node. sends out new jobs to and receives computat ion 
results from the slaves, Whenever a new solution is accepted by the corresponding 
slave, the master  also accepts that  solution and makes it the new Current solution. 
The ten (or fewer) best solutions are stored in the master  node. If  stopping criterion 
is met,  it signals the slaves to stop and sends the computed results to the host. 

This turns out to be very efficient both in solving the problem and in achieving 
a good flop rate on the machine. In particular,  we have got satisfactory results for 
the lattice minimization problem for cluster sizes as large as 100,000 and achieved 
a 0.8 giga flop/sec in double precision operations which is about  one third of the 
theoretical peek performance of the machine as it is. Computa t ional  results are 
presented in the next section. 

5. C o m p u t a t i o n a l  R e s u l t s  

Computa t ional  results on lattice minimization are obtained on the CM-5 at the 
A H P C R C / M S C  operated under the CMOST 7.1.1 operating system. The programs 
are written in F77 and employ the CMMD message passing library. The results 
are presented in three different ranges of cluster sizes: 100 - 1000, 1000 - 10000, 
and 10000 - 100000. The lattice min ima  in the first two cluster ranges are then 
relaxed on the Cray-XMP supercomputer  at the A H P C R C / M S C  using a Minpack2 
subroutine: the Limited Memory BFGS code [21]. Since our main interested here 
is in the lattice minimization, t iming results are reported only for the CM-5. 

Lattice minimization results for cluster ranges in [10000, 100000] are obtained on 
the 512 part i t ion in dedicated mode. These results are presented in Table 1. 



MOLECULAR CONFORMATION ON THE CM-5 203 

Table 1. Computat ional  results for cluster size in [1O000, 100000] 
n La t t  funcla  t nmoves  seconds m ] l o p / s e c  

10000 I C  -72803.2969 2105762 90.5828 692 
20000 IU -147903.7031 11764754 815.4856 704 
30000 I C  -223614.1094 8762607 842.2309 690 
40000 I C  -299660.7188 14371260 1615.5211 708 
50000 I C  -376019.0312 6472805 743.7345 818 
60000 I C  -452480.1250 14383802 2162.8548 676 
70000 F C  -529128.5000 8425552 1424.6277 674 
80000 F U  -605586.3125 14027870 2473.0903 692 
90000 IU -682341.1875 14713350 3471.4590 573 

100000 F U  -759190.1250 21269830 4979.7554 597 

N o t e  t h a t  t h e  l owes t  l a t t i c e  p o t e n t i a l  e n e r g y  v a l u e s  a r e  o b t a i n e d  o n  t h e  I C  l a t t i c e  

e x c e p t  fo r  c l u s t e r  s izes  70000 ,  80000 ,  a n d  100000,  w h e r e  t h e  l owes t  l a t t i c e  p o t e n t i a l  

e n e r g y  v a l u e s  a re  o b t a i n e d  o n  t h e  F C  l a t t i c e .  C o l u m n  3 o f  t h e  t a b l e  r e p o r t s  t h e  

l o w e s t  l a t t i c e  p o t e n t i a l  e n e r g y  v a l u e s  c o m p u t e d .  C o l u m n  4 r e p o r t s  t h e  t o t a l  n u m b e r  

o f  m o v e s  ( p i v o t s )  r e q u i r e d  b y  t h e  a l g o r i t h m .  C o l u m n  5 r e p o r t s  t h e  m a x i m u m  

e l a p s e d  s e c o n d s  o n  t h e  m a s t e r  P E .  C o l u m n  6 r e p o r t s  t h e  m e g a  f lops  ( in  6 4 - b i t  

o p e r a t i o n s )  p e r  s e c o n d  s u s t a i n e d  in  e x e c u t i n g  t h e  p r o g r a m .  N o t e  t h a t  a r a t e  of  818 

m e g a  f lop p e r  s e c o n d  is s u s t a i n e d  o n  t h e  5 0 0 0 0 - c l u s t e r  p r o b l e m .  

Table 2. C o m p u t a t i o n a l  results for cluster size in  [100, 1000] 
n La t t  ]unclat funcopt nmoves  seconds m f l o p / s e c  

100 I C  -522.2946 -557.0398 85114 9.22 14 
200 I C  -1147.5015 -1229.1848 178713 10.06 46 
300 I C  -1809.5105. -1942.1068 49346 14.07 10 
400 I C  -2465.6689 -2650.4315 272438 14.81 73 
500 I C  -3144.3364 -3382.6935 312777 17.26 72 
600 F C  -3825.7654 -4119.2441 161639 17.85 45 
700 I C  -4513.9102 -4862.3946 686757 14.57 264 
800 I C  -5206.5977 -5609.7262 274074 2.44 628 
900 I C  -5916.9136 -6377.4914 88209 11.90 44 

1000 I C  -6604.6631 -7121.8967 240448 15.71 117 

Table 3. Computat ional  results for cluster size in  [1000, 10000] 
n Lat t  ]uncla t ]uncopt nmoves  seconds m f l o p / s e c  

1000 I C  -6604.6631 -7121.8967 239510 17.72 103 
2000 I C  -13741.7510 -14837.5681 204325 14.74 139 
3000 I C  -20960.8281 -22652.0670 462310 15.85 446 
4000 F C  -28267.5215 -30562.3114 1073377 56.52 323 
5000 I C  -35650.5781 -38549.4018 328537 38.18 161 
6000 I C  -42977.4766 -46475.4712 3106811 174.32 388 
7000 1C -50367.2109 -54479.7056 1501368 82.04 468 
8000 I C  -57881.3906 -62611.9024 2048383 134.16 391 
9000 I C  -65230.0547 -70567.5777 3268319 179.46 539 

10000 I C  -72803.2969 -78773.5292 2105762 90.58 692 

C o m p u t a t i o n a l  r e s u l t s  for  t h e  [100, 1000] a n d  t h e  [1000,  10000] r a n g e s  a re  p re -  

s e n t e d  in  T a b l e s  2 a n d  3. T h e s e  r e s u l t s  a r e  o b t a i n e d  in  a t i m e s h a r i n g  m o d e ,  w i t h  
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variable number of users (from one to three) sharing the machine during the exe- 
cution of the program. Therefore only the first 5 columns are important  in these 
two tables. The last two columns are included for readers who are interested in 
the performance of the algorithm/machine in a time sharing environment. T h e  4th 
column in Table 2 and Table 3 reports the lowest potential energy function values 
obtained after the relaxation from the lattice minima. Note that for cluster sizes 
700, 800, and 1000, we have obtained lower energy values than the ones reported 
in [22]. 
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Figure 10. B e s t  k n o w n  f u n c t i o n  v a l u e  a s  a f u n c t i o n  of  c l u s t e r  s i z e :  1 0 0 - 1 0 0 0 ,  d o t t e d  
l i n e  p l o t s  f u n c t i o n  v a l u e s  b e f o r e  r e l a x a t i o n ,  s o l i d  l i n e  p l o t s  f u n c t i o n  v a l u e s  a f t e r  
r e l a x a t i o n  

The lowest potential energy function values for the different cluster size ranges 
are illustrated in Figures 10-12. The minima before relaxation (lattice minima) are 
plotted in dotted lines. The function values after the relaxation are plotted in solid 
lines. Although the dependence of the lowest energy values found on the cluster 
size looks like linear, we believe (from study of the tables) that the dependence is 
somewhat superlinear. This suggests that the minimum inter-atom distance could 
be very small in the ground state configuration if the cluster size becomes very large 
because otherwise the minimum energy will have a linear lower bound [35]. 

The configuration of the putative global minimizer for the 200-cluster is illus- 
trated in Figure 13. The potential energy function value for this configuration is 
-1229.1848. Artificial inter-atom bonds between nearest neighbors are added to 
increase visibility. 
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Figure 11. B e s t  k n o w n  f u n c t i o n  v a l u e  a s  a f u n c t i o n  o f  c l u s t e r  s i z e :  1 0 0 0 - 1 0 0 0 0 ,  d o t t e d  
l i n e  p l o t s  f u n c t i o n  v a l u e s  b e f o r e  r e l a x a t i o n ,  s o l i d  l i n e  p l o t s  f u n c t i o n  v a l u e s  a f t e r  
r e l a x a t i o n  
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Figure 12. B e s t  k n o w n  f u n c t i o n  v a l u e  a s  a f u n c t i o n  o f  c l u s t e r  s i ze :  1 0 0 0 0 - 1 0 0 0 0 0 ,  
b e f o r e  r e l a x a t i o n  
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Figure 13. Putative global minimizer for the 200-cluster 

6. Conclus ions  

In this paper, we have presented a new kind of simulated annealing algorithm - 
the two-level simulated annealing algorithm for solving certain class of hard combi- 
natorial optimization problems. A parallel version of this algorithm has also been 
presented. These algorithms are then applied to the Molecular Conformation prob- 
lem and implemented on the Thinking Machines CM-5. We have been able to get 
better results and get satisfactory results for much larger problems with our paral- 
lel two-level simulated annealing algorithm. We believe that our parallel two-level 
simulated annealing algorithm will find more and more applications in other mod- 
els of Molecular Conformation problems and in hard combinatorial optimization 
problems from Operations Research and Computer Aided Design. 
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